首页> 外文OA文献 >A Posteriori Error Estimates of Krylov Subspace Approximations to Matrix Functions
【2h】

A Posteriori Error Estimates of Krylov Subspace Approximations to Matrix Functions

机译:矩阵Krylov子空间近似的后验误差估计   功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Krylov subspace methods for approximating a matrix function $f(A)$ times avector $v$ are analyzed in this paper. For the Arnoldi approximation to$e^{-\tau A}v$, two reliable a posteriori error estimates are derived from thenew bounds and generalized error expansion we establish. One of them is similarto the residual norm of an approximate solution of the linear system, and theother one is determined critically by the first term of the error expansion ofthe Arnoldi approximation to $e^{-\tau A}v$ due to Saad. We prove that each ofthe two estimates is reliable to measure the true error norm, and the secondone theoretically justifies an empirical claim by Saad. In the paper, byintroducing certain functions $\phi_k(z)$ defined recursively by the givenfunction $f(z)$ for certain nodes, we obtain the error expansion of theKrylov-like approximation for $f(z)$ sufficiently smooth, which generalizesSaad's result on the Arnoldi approximation to $e^{-\tau A}v$. Similarly, it isshown that the first term of the generalized error expansion can be used as areliable a posteriori estimate for the Krylov-like approximation to some othermatrix functions times $v$. Numerical examples are reported to demonstrate theeffectiveness of the a posteriori error estimates for the Krylov-likeapproximations to $e^{-\tau A}v$, $\cos(A)v$ and $\sin(A)v$.
机译:本文分析了近似矩阵函数$ f(A)$乘向量$ v $的Krylov子空间方法。对于Arnoldi逼近$ e ^ {-\ tau A} v $,我们从新边界和我们建立的广义误差扩展中得出了两个可靠的后验误差估计。它们中的一个类似于线性系统的近似解的残差范数,而另一个则由Arnoldi近似的误差展开的第一项严格地确定为Saad导致的$ e ^ {-\ tau A} v $。我们证明这两个估计中的每一个都可以测量真实误差范数,而第二个估计在理论上证明了Saad的经验主张。在本文中,通过引入由给定函数$ f(z)$为某些节点递归定义的某些函数$ \ phi_k(z)$,我们获得了对于$ f(z)$足够光滑的Krylov型近似的误差展开,这将Saad的结果推广到对$ e ^ {-\ tau A} v $的Arnoldi近似上。类似地,它表明广义误差扩展的第一项可以用作可靠的后验估计,用于对某些其他矩阵函数乘以$ v $的类Krylov近似。数值例子被报道以证明对于$ e ^ {-\ tau A} v $,$ \ cos(A)v $和$ \ sin(A)v $的Krylov-like近似的后验误差估计的有效性。

著录项

  • 作者

    Jia, Zhongxiao; Lv, Hui;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号